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Correlation functions in the two-dimensional random-field Ising model
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Transfer-matrix methods are used to study the probability distributions of spin-spin correlation ful@tions
in the two-dimensional random-field Ising model, on long strips of width3— 15 sites, for binary field
distributions at generic distané® temperaturdl, and field intensityhy. For moderately higf, andh, of the
order of magnitude used in most experiments, the distributions are singly peaked, though rather asymmetric.
For low temperatures the single-peaked shape deteriorates, crossing over towards a5 dyrobled-state
structure. A connection is obtained between the probability distribution for correlation functions and the
underlying distribution of accumulated field fluctuations. Analytical expressions are in good agreement with
numerical results foR/L=1, low T, hy not too small, and nea&=1. From a finite-size ansatz at
=T.(hy=0), hy—0, averaged correlation functions are predicted to scalelwil, y=7/8. From numerical
data we estimatg=0.875-0.025, in excellent agreement with theory. In the same region, the rms relative
width W of the probability distributions varies for fixe@/L =1 aswW~hg f(L hg) with k=0.45,u=0.8; f(x)
appears to saturate wher-o, thus implyingW~hg in d=2. [S1063-651X99)02211-4

PACS numbes): 64.60.Fr, 05.50+q, 75.10.Nr

[. INTRODUCTION spin-spin correlation functions, calculated by TM methods
on semi-infinite(strip) systems. Interest in probability distri-
It is by now well established that the space dimensionalityoution functions has increased recently, regarding extensive
d=2 is the lower critical dimension of the random-field quantities in critical disordered systems. This is in line with
Ising model (RFIM) [1-3], in agreement with the early the growing realization that a lack of self-averaging tends to

domain-wall picture of Imry and MB4]. Thus, as usual for a be the rule, rather than the exception, e.g., for susceptibilities

borderline dimensionality, details of two-dimensional behay-2"d magnetizations in such systefis], implying that the
ior are rather intricate. The divergence of the low- width of the associated probability distributions is a perma-

temperature correlation length as the field intensity ap_nent feature that does not trivially vanish with increasing

proaches zero is apparently anomalously sey&leThis is sample size. In the p(esent case, a Igck of sel'f-averaging does
at least partly responsible for difficulties encountered in thémt come as a surprise, as correlation funct|o_ns are not ex-
application of normally very powerful numerical techniquestenswe[lGl so the usyal Brout argumeﬁ1.7] IS not ex-

to this problem. In particular, transfer-matiiXM) methods pected to apply. Al_s_o, ini=2 the random field MOVes the
have been used, either for fully finif6—8] or semi-infinite second-order transition =0, so thed=2 RFIM is off

[9] geometries. TM calculations have usually focused upor?”t'cal'ty at anyT=0; experimental mamfestatl_ons_ of mi-
the structure factor, as obtained from suitable derivatives ofSCOPIC features of thei=2 RFIM come indirectly

the partition function. The correlation length is then derivedrough (sample-averagednoncritical properties{18—-20.

from the structure factor, under the assumption of specifiéndeed’ consideration of the crossover behavior in the vicin-
scaling forms[7—9]; results thus far have been at least in Ity of the zero-field, pure-Ising, critical point provides inter-

qualitative agreement with theoretical predicti¢b$ esting information, as shown.in Sec. V. . .
Many recent studies of the RFIM, both @h=2 and 3, In what follows, we first discuss the ranges of spin-spin

have concentrated on zero-temperature properties, as an é;!;tanceR, temperaturd, and random-flgld mtgnsMyO, for
act ground-state algorithm first applied some time Et which the statistics of correlation functions display the most

has been revisited1,12). In our earlier work 13,14}, where interesting features, and illustrate our choices with simple
a domain-wall scaling picture was developed for barlike Sys_exampl_es. We then tL_Jrn_to t_he connection betwe_en f|e_|d and
tems in generadl, numerical support for theory was provided correlation-function distributions, and show how, in suitable
ind=2 T=0 b),/ a version of such an algorithm adapted tOlimits, one can extract the latter from the former. Next we

strip geometries. FGF+0, we relied on a TM treatment of fStUdi( thetllneTt= th(_h?=0),t_ ho—0, anlq usbe rﬁ:or_relatlon
the free energy, again on strips. unctions to extract information on scaling behavior corre-

Here we deal directly with probability distributions of sponding to the destruction of long-range order by the field.
A final section summarizes our work.

1. NUMERICAL TECHNIQUES
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zil. Electronic address: sldq@if.ufrj.br We calculate the spin-spin correlation functi@®(R)
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R columns apart, of strips of a square lattice of ferromagnetic ooos " T T T T T

Ising spins with nearest-neighbor interactids 1, of width (a)
3=<L=15 sites with periodic boundary conditions across.

This is done along the lines of Sec. 1.4 of Rgf1], with -~ 0.002
standard adaptations for an inhomogeneous syg2@nThe Nat

strip widths used are those manageable on standard worksta-A-
tions, without unusually large memory or time requirements;
as the main overall advantage of TM calculatigagainst,
e.g., those on fully finiteL XL systemg is that monotonic
trends set in for relatively small strip width&1], the upper
bound onL does not significantly constrain our analysis. It
does, however, matter for the values Rfused, since the
interesting range oR/L is around 1, where the transition
betweend=1 andd=2 behavior takes place.

Different sorts of averaging are involved in this case. For
a given realization of the site-dependent random fields, one
has (for sufficiently low field intensity a macroscopic
ground-state degenerafy/l]. TM methods take into account -1 —05 0 05
the Boltzmann weights of all possible spin configurations, so C
they scan the whole set of available ground states for a given
realization of quenched disorder. One must then promediate FIG. 1. Normalized histogramB(G) of occurrence ofG for
over many such realizations, which is done as follows. Atstrip widthL=5, lengthN=10f columns,R=15, hy=0.5, andT
each iteration of the TM from one column to the next, the=0.6 and 2.0. Bin width X 10~ 3. Vertical axis has linear scale in
random-field valuek are drawn for each site from the binary (a) and logarithmic in(b), the latter in order to emphasize values

0.001

In [P(G)]

—_

distribution: occurring with low frequencies.
1 done by otherg11,12. Conversely, here we wished to in-
P(h)_f[(s(h_hO)Jr&(thhO)]' @ vestigate departures from the douldleshape, induced by

increasingT. On the other handfy,iqn= 2.0 is high enough so

By shifting the origin along the strip and accumulating thethat field fluctuationgin the range oh, detailed in the next
respective results, one can produce normalized histogramparagraphhave mainly a perturbative effect.
P(G), of the occurrence d&(R). With typical strip lengths Experimental studielsl8—20 of d=2 dilute Ising antifer-
N=10° columns, we generate 4010 independent esti- romagnets in a uniform fieldl (argued by Fishman and Aha-
mates ofG(R) for R in the range 5-15, which corresponds rony [24] to be equivalent to the RFIMconcentrate orH
to R/IL~1, as explained above. values corresponding thy<0.1-0.2 in Eq.(1), enough to

In our previous study of the unfrustrated random-bondcause significant departures from zero-field behavior. Higher
Ising model[23], the probability distribution function of cor- fields hy=1 are convenient to enrich domain statistics in
relations was expected to be log-normal for strictly one-simulations of fully finite systems, as they reduce low-
dimensional systen{d 6]. This led us to a picture where, for temperature domain sizes and increase degengfdcy 2.
strip width L and spin-spin distandg, the distribution would However, already fohy=0.5 the histograms of correlation
evolve perturbatively away from log-normal with increasing functions were found to be utterly distortédompared to a
L/R. Thus, there we used logarithmic binning for the histo-paradigm of single-peaked structures with reasonably de-
grams of the occurrence @(R): a convenient interval of fined widths, so as to be intractable in terms of a simple
variation of InG(R) was divided into, usually, £obins, each  description with few parameters. This echoes the experimen-
particular realization being assigned to the appropriate bintal observation for RiC, ;Mgg 5F4, that “ ... applied fields
As a similar starting point is not available here, and negativerery much less than the €b molecular field ... have
values of correlations may occur, we have resorted to @uite drastic effects’[18]. Figure 1 illustrates the point.
simple linear choice, dividing the whole-1,1] interval of Nevertheless, fohy=<0.1-0.15 and highT, the overall
variation of G(R) into (again, usually 1%) equal bins. picture stays very close to that depicted in Fig. 2, with the

The temperature and field intervals of interest are broadlyollowing main features(i) a clearly identifiable single peak,
circumscribed because spin-spin correlations are induced Hyelow the zero-field valueG,=G(hy=0); (ii) a short tail
the ferromagneticunit) interaction. Thus one must keep to below the peak and a long one above it, such thigt all
values of T andhg that are not sufficient to render the cou- moments of orde=0 of the distribution arabove G. In
pling negligible; rough boundaries, to be refined next, areFig. 2 we show the zeroth (edp G)) and first {(G)) mo-
To(hg=0)=2.269... andthy(T=0)=4 (above this latter ments.
value each spin always obeys the local field This scenario breaks down for low temperatures, as

We have foundT,,,=0.6 to be low enough to display G(hy=0) becomes close to the upper limit of unity, for
ground-state effects rather prominently. Recall that strastly R/L~1 and the strip widths within reach. However, this
T=0, correlation-function histograms are trivial doulfle- latter regime can be understood in terms of a direct connec-
peaks atG(R)==*1; this reflects the frozen-domain struc- tion between field and correlation-function distributions, de-
ture of the ground state, which is best investigated directly ascribed in Sec. Il below.
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025 03 035 04 045 FIG. 4. Double-logarithmic plot of rms relative width& of
G distributions againsR/L. Strip widthsL=5, 9, 13;R=10, 15;

hy=0.05 (triangles and 0.15(squarel Straight lines are least-

FIG. 2. Normalized histograrR(G) of occurrence o6 for strip squares fits to each set of ddee text T=2.0

width L=5, lengthN=10° columns, R=15, hy=0.05, andT

=2.0. Bin width 2<10° 2. Vertical bars in inset located, respec-
’ [Il. DISTRIBUTION OF G FROM FIELD DISTRIBUTION
tively, at Gy (full line), explnG) (short-dashed (G) (long-
dashegl An important question is how the field distribution gives

rise to the distribution for the correlation functicdB(R)
=(oyoR) (at specific separatioR).

A scenario worth exploring is the following: the probabil-
ity distribution P(G) for G(R) arises from a distribution

For fixedR, smallhg, and highT, Fig. 3 shows the typical
evolution of distributions against. Note that, with hg

=0.15, the single-peak structure shows early signs of frayOf characteristic scalest, related to G(R) via G(R)

ng. ~exp(—R/&), with & distributed according to some distribu-

One can see in Fig. 3 a narrowing effect with increasing,. : S
L. This is quantitatively depicted in Fig. 4, for which the usegt'on' This last probability distribution has then to be related

of R/L on the horizontal axis is inspired in the usual ideas ofi© the _f|eld d|st_r|but|on. At IQW te_m.pera_tur_es a domain piC-
ture might provide that relationship: a distribution of domain

2?I:;Sc;éﬁfg?gggs’;r;gnq;%froven fruitfulin our earlier Studysizesgi arisgs from the dis'tri_bu_tipn of fields aggregated over
Though the rms relative widtiv=((G?)—(G)2)¥(G) each domain, e.g., by minimizing en_ergtyr free energy
appears to approach zero for sl (where, as argued in along the lines of Ref.13], but generalized to consider spe-
R%? [23] d:pzp behavior should show We’ note t%\at(i) cific field configurations, with their associated probability
' ' L P ' [the free energy minimization may make such an approach
the data dlsplay nonmono'gonlc jumps even for fixgd and applicable up to temperatures of ordex(h=0)]
(if) power-law fits ofW against R/L)" show a rather strong The simplest such scheme uses a commoﬁ domair¢size

dependence af on hy (for data in Fig. 4 one has=1 for . . T )
hy=0.05, and 2 forhy=0.15). These facts indicate that, over which the total field ish=xho\¢L with p(x)

2 .. . . . .
from consideration of the above data alone, we are notin &€ * /v2m. This is the distribution of aggregated fields
position to conclude thatV—0 as the trued=2 regime is ©On & domain, arising from the independent distributions

7 . -
approached. Indeed, in Sec. IV below a different analysis, at[ 8(h—ho) + 6(h+ho)] of fields h; at each sitei. Then
fixed R/L, strongly suggests that the widths do not vanish inMinimizing the free energy per unit lengtfior the T=0

the two-dimensional limit. problem gives
0.025 = = 4 2L 2
. E| T T T T T T ]|-8| 7 E g—g(x)— thg . ( )
C L=5 . - S .
0.02 ¢ ] Hence, from the probability distributiop(x), there arises a
r 1 probability distribution foré(x), and via that a probability
__0.015 - distribution P(G) for G(R) ~exp(—R/&). The result is
(&) L 4
~ oot a E 2321 \12 1 G(ZJZL/th)—l
C 1 P(G,T=0)= . (3
g ] ( ) ( hSR> V27 (In1/G)Y2
0.005 C N
r ] The important parameter in this zero-temperature description
o Ll ] is A =2J°L/h3R (which is of order 1 forR=15, L=5, h,

0.6 0.8
G

o
IS
o
=

=0.5, for examplg
The T+ 0 generalization of such pictures involves the en-
FIG. 3. Normalized histogramB(G) of occurrence ofG for ~ tropic contribution—T(Sy+S,) to the free energy, which
strip widthsL =5, 9, and 13; lengtiN=10° columns,R=10, h, includes a contribution from the positioning of domain walls
=0.15, andT=2.0. Bin width 2<103, (—TS) (see Ref[13], but still allowing for probabilities of
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FIG. 5. Histograms of occurrence &f for T=0.6, hy=0.5, R FIG. 6. Averaged correlation function;ormalized by their
=15, nearG=1; L=3 (triangles, 5 (squares and 7(hexagons zero-field counterpartsagainstLY hy with y=0.875. Each point is
Bin width 2x 10~*. Full symbols: normalized histogramB(G).  the central estimate on a stip= 10" sites long. See text and Table
Empty symbolsP’(G), Eq. (6). | for a discussion of estimated error bars.

specific field configurationsand also one from the random- dependent temperature at which a sharp transition still oc-
walk-like wandering of the domain walls(TS,). curs; it turns out that even id=2, the dominant terms still
These entropies af@sing the simplest picture of a single depend on the same combination, where 12@] “ T.(hg)”
E(X)] Sp=KkgIn &X)/&X) [using reduction valid forg(x) denotes a pseudocritical temperature marking, e.g., the loca-
large] and S;=kgIn u-/&(X)=kg(L/£(x))In u, with w~z  tion of the rounded specific-heat peak. This is true except for
—1, z= lattice coordination number. Minimization &fper  the d=2 specific heatwhich does not concern us directly
unit length then gives here, where Inhg;-dependent terms also play an important
role [19,26. Further, it is predicted25] that the crossover
_ hoX\/L_§ exponentg =y, which is the pure Ising susceptibility expo-
0= 2JL nent. Ind=2, specific heaf19] and neutron-scattering0]
data are in good agreement both with the choice of scaling
The variable x is again distributed with the domain- variable, as above, and with the exactly knows 7/4.
aggregated field distributiop(x)=e‘x2/2/\/ﬁ, which, via Here we propose a direct check of scaling, as follows. For
Eq. (4) then provides the distribution of and finally the ho—0, nearT;,=T(ho=0), one expect$19] “ T(h)”
distribution for G~e~R¢ (along the general lines indicated =T o—ch3?. Hencehy #?t=h, ?(T—T,,) apart from a
above. Different pairs of terms dominate E@l) in different  small, finite shift. SettingT=T., and making the usual
regimes ofhy, T, and L. Of special interest to us are the finite-size scaling ansaf27] t—L~'" with the pure Ising
first-order low-temperature corrections. An approximatevalue v=1 (this latter assumption is to be verifig@ne ob-
treatment of Eq(4), valid for G near 1, gives tains that thefinite-size scaling variable aT =T, ; must be

1+I(Lln,u+ln§—1). (4)

P(G,T)=P(G,T=0)(In1/G) *e™", (5) x=hoL?2" (T=T,o,hg—0), )

with P(G,T=0) given by Eq.(3). Apart from weakly with ¢/2v=7/8 in d=2. This implies that the correlation
L-dependent normalization factors, one should have length related to the decay of ferromagnetic spin-spin corre-

lations diverges along this particular line as
P'(G)=P(G,T)G *(In(1/G))P=const,  (6) g gHisp

T=Teo0.hg—0)~hy ¥, y=¢/2v. 8
wherea=(2J2L/h2R) — 1, B=1/2+4kgT/JL. §(T=Tco.no—0)~hy y=dlev ®

In Fig. 5 we check Eq(6) for T=0.6, ho=0.5, R=15,  From standard finite-size scalifig§7], the correlation func-
andL=3, 5, and 7. Use of narrow strigse., R/L>1) and  tjons for distanceR, strip width L, t=T—T.,=0, and
high fields is important in order to produce broad distribu-ragndom-field intensity, are then expected to behave as
tions in the low-temperature regime considered. One sees
that, indeed, the stron@ dependence oP(G,T) nearG G(R,L,t=0hg)=L" "T'(R/L,LYhyp). 9)
=1 can be essentially accounted for by the factors in(gq.

In Fig. 6 we show, for fixedR/L=1, the scaling plot thus
IV. SCALING NEAR THE ZERO-FIELD CRITICAL POINT suggested, whernghas been adjusted to provide the best data
collapse. The same procedures have been used very recently

According to theory[5,19,20,24,2} the scaling behavior in studies of unfrustrated random-bond Potts mo@28.
of the RFIM depends on the variablf%|t|‘¢, wherehy is Note the use of averaged correlation functiofs). We
the random-field intensity ant=[T—T.(ho)]/T.(hg) is a also performed plots wittypical ones[23], exp(In G)), with
reduced temperature. Fat>d.=2, T.(hy) is the field- entirely similar results. As remarked in Sec. Il, one has
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TABLE I. Correlation functions calculated at=T, ,, distance 0 e
R=L, and random-field intensity h,=0 (Gy) and hy C ]
=0.8.""8 ({(G(hp))). Error bars in parentheses give uncertainties -1F ]
in the last-quoted digits, from spread among central estimates for r .
five different runs on strips witiN=10°. s L I

L Go (G(ho)) (G(ho))/Go £ Sf E

g r ]

5 0.333422277 0.364281) 1.092310) - r .

8 0.300005458 0.328(80) 1.093310) —4r = 0.45 7

10 0.284437852 0.310840) 1.092914) r U =08 1

12 0.272124932 0.297883) 1.092618) -5 | | | _| ’ | B

15 0.257635774 0.281489) 1.092623) o 05 1 15 2 25

L h,"

(G)>G(ho=0), on account of the long forward tail of the g, 7. Semilogarithmic scaling plot of rms relative widths,

distribution. This happens for exjif G)) as well, and is a g against_ hy. Key to symbols is the same as in Fig. 6. Curves
scenario valid only for low field intensities. Near the end of are fitting splinegsee text

the region where scaling holds, on the right of Fig. 6, one

indeed sees the beginning of a trend towards stabilizatio  {here must be a regime in which the distribution remains
(which would, for higher fields, presumably turn into a de-ecognizably similar to Fig. 2, with the field-induced broad-
creasing function oho, were scaling still valid ening reaching a relatively small maximumRd.>h," (at

The value_y=0.875_ used in Fig. 6 gave the best datag, o R/L). At the other endk<1, the only obvious con-
collapse, which remained reasonably good over the interv traint is thatii) f(x) must not increase faster than /" as
(0.85,0.90. The plots using exglph G)) behaved in the same x—0, if it does diverge at all

way. Thus our estimate ig=0.8750.025, in very good From scaling plots oW h; * against. h! (at T="T, , and

agreement with the finite-size scaling ansatz descrlbegIO not very large with tentative values of the exponents, we

above, W|thy=_ 7/4_, v=1. have found the best data collapse to occur foe0.43
Each point in Fig. 6 represents an average taken from one

. o . —0.50 andu=0.8. Figure 7, where the vertical axis is loga-
run on stripsN=10° columns long. We now discuss the fithmic. shows our results fox=0.45 andu=0.8. Forx
estimation of error bars, not shown in the figure. Recalling X o . . ' : o
that the width of the distributions is not expected to vanish in_ =’ the fitting spline is the functiony= _0'3,_,(
the thermodynamic limit, we follow the lines extensively 5.3 exp(-1.5%), implying a limiting scaled widthW hy

elaborated elsewhere for similar cageg,23,29, and esti- - eXP(-0.3)=0.83, consist_ent witlii) above. Fox<1 the
mate fluctuations by evaluating the spread among overalfftting curve is given byy=1.73Inx—1.40, in agreement

averagedi.e., central estimatedrom different samples. For With requisite(ii). _ _ _
values ofL and h, such thatL”®h,=0.8 (approximately To our knowledge there is no structural relationship be-

midway along the horizontal axis of Fig),éve performed a tween the width exponents andu and the _standard critical
series of five runs, each witN=10°, for eachL. Table | indices, such as the crossover expongndiscussed above.
shows the results. One sees that fy.is satisfied to within  COnversely, one would expect widths to behave similarly to
two parts in 16. Such an agreement is further evidence intN€ @bOVe picture even &t= T o, provided that one keeps to

support of the scaling ansatz proposed above: it also suggedtigh temperatures and low field intensities. Most likely,
that the scaling power ig=7/8 exactly. asymptotic scaled widths will depend dna matter for fur-

Incidentally, note that from the constancy againstf the ther investigation is whether or not the numerical values of
ratio (G(R,L,t=0hg))/G(R,L,t=0,0), as verified in Table "€ exponents will also vary.
I, and the scaling of correlation functions given in E§),

one immediately has;= 7,5ng=1/4 for the decay of ferro- V. CONCLUSIONS
magnetic correlations &i=T,.,, hg—0.

We now return to scaling of the rms relative widit of We have studied the probability distributions of the oc-
the distribution against field and strip width, restricting our-currence of spin-spin correlation functio® in the d=2
selves toT nearTcO and hO not very |arge_ For fixedR/L, RFIM, for binary distributions of the local fields, at generic

taking into account that the distribution broade(as with ~ distanceR, temperatureT, and field intensityho, on long
increasing random-field intensityvhich is elementarily ex- strips of widthL =3-15 sites.

pected, and(b) also with increasing strip widtkwhich we We have shown that for moderately high temperatures, of
noticed in our numerics & =T, ,), we propose the follow- the order of the zero-field transition poif. o, and field
ing scaling form: intensitieshy=0.1—0.2 in units of the nearest-neighbor cou-
pling (the same order of magnitude used in most experi-
W=hgf(L hy), (10 mentg, the distributions retain a recognizable single-peaked

structure, with a well-defined width. However, they display
where the effective length,=h, " plays the role of a satu- considerable asymmetry, with a short tail below the maxi-
ration distance, such thaf(x)—const, x>1. In other mum and a long one above it, the latter owing to the mutual
words, (i) for high temperatures such 8s=T., and small reinforcement between ferromagnetic spin-spin interactions
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and large accumulated-field fluctuations. For low tempera- Finally, as regards contact with experiment, one may ask
tures, the single-peaked shape deteriorates markedly, &®w the present results for correlation functions relate, e.g.,
crossover takes place towards the doudlstructure charac- to the wave-vector-dependent scattering amplitudes in neu-
teristic of the ground state. tron scattering[18]. Attempts in this direction have been
We have established a connection between the probabilitthade earlief9]. Since the scattering function reflects spatial
distribution for correlation functions and the underlying dis- averages over relatively extended regions, a connection to
tribution of accumulated field fluctuations. Starting from acorrelation functions must be established via a correlation
zero-temperature description based on the distributiqesf length which represents the average decay of spin-spin cor-

sentially flay domain walls across the strip, we have shownygationg9,18]. Furthermore, fitting numerical data from one
how (low-) temperature effects can be incorporated, and Wey 15 experimental results from the other is a tricky task,

proposed analytical expressions for the main dependence hich is usually mediated by resorting to heuristically pro-

:E:iglzgé?jumt'gg cég::;ﬁleg;o\g? dr}::;loin;ﬁ; :1T' ?;dfo'nlgt posed line shapes. Of these, Lorentzian and Lorentzian-

very smallhg, and close to the upp’er.e;dreplée:’ 1 théy are squareq func_:tio.ns have bgen among the most popa/as)

in good quzg,ntitative agreement with numerical]y calculateolth(?ugh In principle there is no reason yvhy one must be re-

distributions stricted to them. A broad range of possible line shapes, com-
’ pounded with the wide variation exhibited by several prop-

in AtthT:rT?O} LOVH?OH?,H‘:VG h%e dmvac:e c%nta(f:it]\i/;nt_h ;cal'nt_arties of correlation functions, as shown in the present work,
g theory Tor bulk Systems, a eveloped a €-SI2€ ane.o 1ses one to anticipate a fairly involved investigation.

satz to describe the scaling behavior of averaged correlation
functions. The variable that describes such behavior was
found to belYhy, with y=0.875-0.025 from numerical
data, in excellent agreement with the ansatz’s predictjon,
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