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Correlation functions in the two-dimensional random-field Ising model
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Transfer-matrix methods are used to study the probability distributions of spin-spin correlation functionsG
in the two-dimensional random-field Ising model, on long strips of widthL53215 sites, for binary field
distributions at generic distanceR, temperatureT, and field intensityh0. For moderately highT, andh0 of the
order of magnitude used in most experiments, the distributions are singly peaked, though rather asymmetric.
For low temperatures the single-peaked shape deteriorates, crossing over towards a double-d ground-state
structure. A connection is obtained between the probability distribution for correlation functions and the
underlying distribution of accumulated field fluctuations. Analytical expressions are in good agreement with
numerical results forR/L*1, low T, h0 not too small, and nearG51. From a finite-size ansatz atT
5Tc(h050), h0→0, averaged correlation functions are predicted to scale withLyh0 , y57/8. From numerical
data we estimatey50.87560.025, in excellent agreement with theory. In the same region, the rms relative
width W of the probability distributions varies for fixedR/L51 asW;h0

k f (L h0
u) with k.0.45,u.0.8; f (x)

appears to saturate whenx→`, thus implyingW;h0
k in d52. @S1063-651X~99!02211-4#

PACS number~s!: 64.60.Fr, 05.50.1q, 75.10.Nr
lit
ld

v
w-
ap

th
es

o

ed
ifi
in

n

ys
d
to
f

f

ds
-
sive
ith
to

ties

a-
ng
does
ex-

e

i-

in-
r-

in

ost
ple
and
le
e

re-
ld.

o
B

I. INTRODUCTION

It is by now well established that the space dimensiona
d52 is the lower critical dimension of the random-fie
Ising model ~RFIM! @1–3#, in agreement with the early
domain-wall picture of Imry and Ma@4#. Thus, as usual for a
borderline dimensionality, details of two-dimensional beha
ior are rather intricate. The divergence of the lo
temperature correlation length as the field intensity
proaches zero is apparently anomalously severe@5#. This is
at least partly responsible for difficulties encountered in
application of normally very powerful numerical techniqu
to this problem. In particular, transfer-matrix~TM! methods
have been used, either for fully finite@6–8# or semi-infinite
@9# geometries. TM calculations have usually focused up
the structure factor, as obtained from suitable derivatives
the partition function. The correlation length is then deriv
from the structure factor, under the assumption of spec
scaling forms@7–9#; results thus far have been at least
qualitative agreement with theoretical predictions@5#.

Many recent studies of the RFIM, both ind52 and 3,
have concentrated on zero-temperature properties, as a
act ground-state algorithm first applied some time ago@10#
has been revisited@11,12#. In our earlier work@13,14#, where
a domain-wall scaling picture was developed for barlike s
tems in generald, numerical support for theory was provide
in d52, T50 by a version of such an algorithm adapted
strip geometries. ForTÞ0, we relied on a TM treatment o
the free energy, again on strips.

Here we deal directly with probability distributions o
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spin-spin correlation functions, calculated by TM metho
on semi-infinite~strip! systems. Interest in probability distri
bution functions has increased recently, regarding exten
quantities in critical disordered systems. This is in line w
the growing realization that a lack of self-averaging tends
be the rule, rather than the exception, e.g., for susceptibili
and magnetizations in such systems@15#, implying that the
width of the associated probability distributions is a perm
nent feature that does not trivially vanish with increasi
sample size. In the present case, a lack of self-averaging
not come as a surprise, as correlation functions are not
tensive @16#, so the usual Brout argument@17# is not ex-
pected to apply. Also, ind52 the random field moves th
second-order transition toT50, so thed52 RFIM is off
criticality at anyT>0; experimental manifestations of m
croscopic features of thed52 RFIM come indirectly
through ~sample-averaged! noncritical properties@18–20#.
Indeed, consideration of the crossover behavior in the vic
ity of the zero-field, pure-Ising, critical point provides inte
esting information, as shown in Sec. IV.

In what follows, we first discuss the ranges of spin-sp
distanceR, temperatureT, and random-field intensityh0, for
which the statistics of correlation functions display the m
interesting features, and illustrate our choices with sim
examples. We then turn to the connection between field
correlation-function distributions, and show how, in suitab
limits, one can extract the latter from the former. Next w
study the lineT5Tc(h050), h0→0, and use correlation
functions to extract information on scaling behavior cor
sponding to the destruction of long-range order by the fie
A final section summarizes our work.

II. NUMERICAL TECHNIQUES
AND PARAMETER RANGES

We calculate the spin-spin correlation functionG(R)
[^s0

1sR
1&, between spins on the same row~say, row 1!, and

ra-
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5192 PRE 60S. L. A. de QUEIROZ AND R. B. STINCHCOMBE
R columns apart, of strips of a square lattice of ferromagn
Ising spins with nearest-neighbor interactionJ51, of width
3<L<15 sites with periodic boundary conditions acro
This is done along the lines of Sec. 1.4 of Ref.@21#, with
standard adaptations for an inhomogeneous system@22#. The
strip widths used are those manageable on standard wor
tions, without unusually large memory or time requiremen
as the main overall advantage of TM calculations~against,
e.g., those on fully finite,L3L systems! is that monotonic
trends set in for relatively small strip widths@21#, the upper
bound onL does not significantly constrain our analysis.
does, however, matter for the values ofR used, since the
interesting range ofR/L is around 1, where the transitio
betweend51 andd52 behavior takes place.

Different sorts of averaging are involved in this case. F
a given realization of the site-dependent random fields,
has ~for sufficiently low field intensity! a macroscopic
ground-state degeneracy@11#. TM methods take into accoun
the Boltzmann weights of all possible spin configurations,
they scan the whole set of available ground states for a g
realization of quenched disorder. One must then promed
over many such realizations, which is done as follows.
each iteration of the TM from one column to the next, t
random-field valuesh are drawn for each site from the bina
distribution:

P~h!5
1

2
@d~h2h0!1d~h1h0!#. ~1!

By shifting the origin along the strip and accumulating t
respective results, one can produce normalized histogra
P(G), of the occurrence ofG(R). With typical strip lengths
N5106 columns, we generate 104– 105 independent esti-
mates ofG(R) for R in the range 5–15, which correspond
to R/L;1, as explained above.

In our previous study of the unfrustrated random-bo
Ising model@23#, the probability distribution function of cor
relations was expected to be log-normal for strictly on
dimensional systems@16#. This led us to a picture where, fo
strip widthL and spin-spin distanceR, the distribution would
evolve perturbatively away from log-normal with increasi
L/R. Thus, there we used logarithmic binning for the his
grams of the occurrence ofG(R): a convenient interval of
variation of lnG(R) was divided into, usually, 103 bins, each
particular realization being assigned to the appropriate
As a similar starting point is not available here, and nega
values of correlations may occur, we have resorted t
simple linear choice, dividing the whole@21,1# interval of
variation ofG(R) into ~again, usually 103) equal bins.

The temperature and field intervals of interest are broa
circumscribed because spin-spin correlations are induce
the ferromagnetic~unit! interaction. Thus one must keep
values ofT andh0 that are not sufficient to render the co
pling negligible; rough boundaries, to be refined next,
Tc(h050)52.269 . . . andh0c(T50)54 ~above this latter
value each spin always obeys the local field!.

We have foundTlow50.6 to be low enough to displa
ground-state effects rather prominently. Recall that strictlyat
T50, correlation-function histograms are trivial doubled
peaks atG(R)561; this reflects the frozen-domain stru
ture of the ground state, which is best investigated directly
ic
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done by others@11,12#. Conversely, here we wished to in
vestigate departures from the double-d shape, induced by
increasingT. On the other hand,Thigh52.0 is high enough so
that field fluctuations~in the range ofh0 detailed in the next
paragraph! have mainly a perturbative effect.

Experimental studies@18–20# of d52 dilute Ising antifer-
romagnets in a uniform fieldH ~argued by Fishman and Aha
rony @24# to be equivalent to the RFIM! concentrate onH
values corresponding toh0&0.1– 0.2 in Eq.~1!, enough to
cause significant departures from zero-field behavior. Hig
fields h0*1 are convenient to enrich domain statistics
simulations of fully finite systems, as they reduce lo
temperature domain sizes and increase degeneracy@11,12#.
However, already forh050.5 the histograms of correlatio
functions were found to be utterly distorted~compared to a
paradigm of single-peaked structures with reasonably
fined widths!, so as to be intractable in terms of a simp
description with few parameters. This echoes the experim
tal observation for Rb2C0.7Mg0.3F4, that ‘‘ . . . applied fields
very much less than the Co21 molecular fields . . . have
quite drastic effects’’@18#. Figure 1 illustrates the point.

Nevertheless, forh0&0.120.15 and highT, the overall
picture stays very close to that depicted in Fig. 2, with t
following main features:~i! a clearly identifiable single peak
below the zero-field valueG0[G(h050); ~ii ! a short tail
below the peak and a long one above it, such that~iii ! all
moments of order>0 of the distribution areabove G0. In
Fig. 2 we show the zeroth (exp^ln G&) and first (̂ G&) mo-
ments.

This scenario breaks down for low temperatures,
G(h050) becomes close to the upper limit of unity, fo
R/L;1 and the strip widths within reach. However, th
latter regime can be understood in terms of a direct conn
tion between field and correlation-function distributions, d
scribed in Sec. III below.

FIG. 1. Normalized histogramsP(G) of occurrence ofG for
strip width L55, lengthN5106 columns,R515, h050.5, andT
50.6 and 2.0. Bin width 231023. Vertical axis has linear scale in
~a! and logarithmic in~b!, the latter in order to emphasize value
occurring with low frequencies.
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PRE 60 5193CORRELATION FUNCTIONS IN THE TWO- . . .
For fixedR, smallh0, and highT, Fig. 3 shows the typica
evolution of distributions againstL. Note that, with h0

50.15, the single-peak structure shows early signs of fr
ing.

One can see in Fig. 3 a narrowing effect with increas
L. This is quantitatively depicted in Fig. 4, for which the u
of R/L on the horizontal axis is inspired in the usual ideas
finite-size scaling, and has proven fruitful in our earlier stu
of random-bond systems@23#.

Though the rms relative widthW[(^G2&2^G&2)1/2/^G&
appears to approach zero for smallR/L ~where, as argued in
Ref. @23#, d52 behavior should show up!, we note that~i!
the data display nonmonotonic jumps even for fixedh0; and
~ii ! power-law fits ofW against (R/L)x show a rather strong
dependence ofx on h0 ~for data in Fig. 4 one hasx.1 for
h050.05, and 2 forh050.15). These facts indicate tha
from consideration of the above data alone, we are not
position to conclude thatW→0 as the trued52 regime is
approached. Indeed, in Sec. IV below a different analysis
fixed R/L, strongly suggests that the widths do not vanish
the two-dimensional limit.

FIG. 2. Normalized histogramP(G) of occurrence ofG for strip
width L55, length N5106 columns, R515, h050.05, andT
52.0. Bin width 231023. Vertical bars in inset located, respe
tively, at G0 ~full line!, exp̂ ln G& ~short-dashed!, ^G& ~long-
dashed!.

FIG. 3. Normalized histogramsP(G) of occurrence ofG for
strip widthsL55, 9, and 13; lengthN5106 columns,R510, h0

50.15, andT52.0. Bin width 231023.
-
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III. DISTRIBUTION OF G FROM FIELD DISTRIBUTION

An important question is how the field distribution give
rise to the distribution for the correlation functionG(R)
[^s0sR& ~at specific separationR).

A scenario worth exploring is the following: the probab
ity distribution P(G) for G(R) arises from a distribution
of characteristic scalesj, related to G(R) via G(R)
;exp(2R/j), with j distributed according to some distribu
tion. This last probability distribution has then to be relat
to the field distribution. At low temperatures a domain p
ture might provide that relationship: a distribution of doma
sizesj i arises from the distribution of fields aggregated ov
each domain, e.g., by minimizing energy~or free energy!
along the lines of Ref.@13#, but generalized to consider spe
cific field configurations, with their associated probabili
@the free energy minimization may make such an appro
applicable up to temperatures of orderTc(h50)#.

The simplest such scheme uses a common domain sizj,
over which the total field ish5xh0AjL with p(x)
5e2x2/2/A2p. This is the distribution of aggregated field
on a domain, arising from the independent distributio
1
2 @d(h2h0)1d(h1h0)# of fields hi at each sitei. Then
minimizing the free energy per unit length~for the T50
problem! gives

j5j~x!5
4J2L

x2h0
2 . ~2!

Hence, from the probability distributionp(x), there arises a
probability distribution forj(x), and via that a probability
distributionP(G) for G(R);exp(2R/j). The result is

P~G,T50!5S 2J2L

h0
2R D 1/2 1

A2p

G(2J2L/h0
2R)21

~ ln 1/G!1/2
. ~3!

The important parameter in this zero-temperature descrip
is l[2J2L/h0

2R ~which is of order 1 forR515, L55, h0

50.5, for example!.
TheTÞ0 generalization of such pictures involves the e

tropic contribution2T(S01S1) to the free energyF, which
includes a contribution from the positioning of domain wa
(2TS0) ~see Ref.@13#, but still allowing for probabilities of

FIG. 4. Double-logarithmic plot of rms relative widthsW of
distributions againstR/L. Strip widths L55, 9, 13; R510, 15;
h050.05 ~triangles! and 0.15~squares!. Straight lines are least
squares fits to each set of data~see text!. T52.0.
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5194 PRE 60S. L. A. de QUEIROZ AND R. B. STINCHCOMBE
specific field configurations! and also one from the random
walk-like wandering of the domain walls (2TS1).

These entropies are@using the simplest picture of a sing
j(x)# S05kB ln j(x)/j(x) @using reduction valid forj(x)
large# and S15kB ln mL/j(x)5kB„L/j(x)…ln m, with m;z
21, z5 lattice coordination number. Minimization ofF per
unit length then gives

05
h0xALj

2JL
211

kBT

JL
~L ln m1 ln j21!. ~4!

The variable x is again distributed with the domain
aggregated field distributionp(x)5e2x2/2/A2p, which, via
Eq. ~4! then provides the distribution ofj and finally the
distribution for G;e2R/j ~along the general lines indicate
above!. Different pairs of terms dominate Eq.~4! in different
regimes ofh0 , T, and L. Of special interest to us are th
first-order low-temperature corrections. An approxima
treatment of Eq.~4!, valid for G near 1, gives

P~G,T!}P~G,T50!~ ln 1/G!24kBT/JL, ~5!

with P(G,T50) given by Eq. ~3!. Apart from weakly
L-dependent normalization factors, one should have

P8~G![P~G,T!G2a
„ln~1/G!…b5const, ~6!

wherea[(2J2L/h0
2R)21, b[1/214kBT/JL.

In Fig. 5 we check Eq.~6! for T50.6, h050.5, R515,
andL53, 5, and 7. Use of narrow strips~i.e., R/L.1) and
high fields is important in order to produce broad distrib
tions in the low-temperature regime considered. One s
that, indeed, the strongG dependence ofP(G,T) near G
51 can be essentially accounted for by the factors in Eq.~6!.

IV. SCALING NEAR THE ZERO-FIELD CRITICAL POINT

According to theory@5,19,20,24,25#, the scaling behavior
of the RFIM depends on the variableh0

2utu2f, whereh0 is
the random-field intensity andt5@T2Tc(h0)#/Tc(h0) is a
reduced temperature. Ford.dc52, Tc(h0) is the field-

FIG. 5. Histograms of occurrence ofG for T50.6, h050.5, R
515, nearG51; L53 ~triangles!, 5 ~squares!, and 7~hexagons!.
Bin width 231024. Full symbols: normalized histograms,P(G).
Empty symbols:P8(G), Eq. ~6!.
e
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dependent temperature at which a sharp transition still
curs; it turns out that even ind52, the dominant terms stil
depend on the same combination, where now@20# ‘‘ Tc(h0)’’
denotes a pseudocritical temperature marking, e.g., the l
tion of the rounded specific-heat peak. This is true except
the d52 specific heat~which does not concern us directl
here!, where lnh0-dependent terms also play an importa
role @19,26#. Further, it is predicted@25# that the crossover
exponentf5g, which is the pure Ising susceptibility expo
nent. Ind52, specific heat@19# and neutron-scattering@20#
data are in good agreement both with the choice of sca
variable, as above, and with the exactly knowng57/4.

Here we propose a direct check of scaling, as follows.
h0→0, nearTc 0[Tc(h050), one expects@19# ‘‘ Tc(h0)’’
5Tc 02ch0

2/f . Hence,h0
22/ft.h0

22/f(T2Tc 0) apart from a
small, finite shift. SettingT5Tc 0 and making the usua
finite-size scaling ansatz@27# t→L21/n with the pure Ising
valuen51 ~this latter assumption is to be verified!, one ob-
tains that the~finite-size! scaling variable atT5Tc 0 must be

x[h0Lf/2n ~T5Tc 0 ,h0→0!, ~7!

with f/2n57/8 in d52. This implies that the correlation
length related to the decay of ferromagnetic spin-spin co
lations diverges along this particular line as

j~T5Tc 0 ,h0→0!;h0
21/y , y5f/2n. ~8!

From standard finite-size scaling@27#, the correlation func-
tions for distanceR, strip width L, t[T2Tc 050, and
random-field intensityh0 are then expected to behave as

G~R,L,t50,h0!5L2hG~R/L,Lyh0!. ~9!

In Fig. 6 we show, for fixedR/L51, the scaling plot thus
suggested, wherey has been adjusted to provide the best d
collapse. The same procedures have been used very rec
in studies of unfrustrated random-bond Potts models@28#.

Note the use of averaged correlation functions,^G&. We
also performed plots withtypical ones@23#, exp(̂ ln G&), with
entirely similar results. As remarked in Sec. II, one h

FIG. 6. Averaged correlation functions~normalized by their
zero-field counterparts! againstLy h0 with y50.875. Each point is
the central estimate on a stripN5105 sites long. See text and Tabl
I for a discussion of estimated error bars.
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PRE 60 5195CORRELATION FUNCTIONS IN THE TWO- . . .
^G&.G(h050), on account of the long forward tail of th
distribution. This happens for exp(^ln G&) as well, and is a
scenario valid only for low field intensities. Near the end
the region where scaling holds, on the right of Fig. 6, o
indeed sees the beginning of a trend towards stabiliza
~which would, for higher fields, presumably turn into a d
creasing function ofh0, were scaling still valid!.

The valuey50.875 used in Fig. 6 gave the best da
collapse, which remained reasonably good over the inte
~0.85,0.90!. The plots using exp(^ln G&) behaved in the sam
way. Thus our estimate isy50.87560.025, in very good
agreement with the finite-size scaling ansatz descri
above, withg57/4, n51.

Each point in Fig. 6 represents an average taken from
run on stripsN5105 columns long. We now discuss th
estimation of error bars, not shown in the figure. Recall
that the width of the distributions is not expected to vanish
the thermodynamic limit, we follow the lines extensive
elaborated elsewhere for similar cases@22,23,29#, and esti-
mate fluctuations by evaluating the spread among ove
averages~i.e., central estimates! from different samples. Fo
values of L and h0 such thatL7/8h050.8 ~approximately
midway along the horizontal axis of Fig. 6!, we performed a
series of five runs, each withN5105, for eachL. Table I
shows the results. One sees that Eq.~9! is satisfied to within
two parts in 103. Such an agreement is further evidence
support of the scaling ansatz proposed above; it also sugg
that the scaling power isy57/8 exactly.

Incidentally, note that from the constancy againstL of the
ratio ^G(R,L,t50,h0)&/G(R,L,t50,0), as verified in Table
I, and the scaling of correlation functions given in Eq.~9!,
one immediately hash5h Ising51/4 for the decay of ferro-
magnetic correlations atT5Tc 0 , h0→0.

We now return to scaling of the rms relative widthW of
the distribution against field and strip width, restricting ou
selves toT nearTc 0 and h0 not very large. For fixedR/L,
taking into account that the distribution broadens~a! with
increasing random-field intensity~which is elementarily ex-
pected!, and ~b! also with increasing strip width~which we
noticed in our numerics atT5Tc 0), we propose the follow-
ing scaling form:

W5h0
k f ~L h0

u!, ~10!

where the effective lengthLh[h0
2u plays the role of a satu

ration distance, such thatf (x)→const, x@1. In other
words, ~i! for high temperatures such asT5Tc 0 and small

TABLE I. Correlation functions calculated atT5Tc 0, distance
R5L, and random-field intensity h050 (G0) and h0

50.8L27/8 (^G(h0)&). Error bars in parentheses give uncertaint
in the last-quoted digits, from spread among central estimates
five different runs on strips withN5105.

L G0 ^G(h0)& ^G(h0)&/G0

5 0.333422277 0.36420~31! 1.0923~10!

8 0.300005458 0.32800~30! 1.0933~10!

10 0.284437852 0.31086~40! 1.0929~14!

12 0.272124932 0.29733~48! 1.0926~18!

15 0.257635774 0.28148~59! 1.0926~23!
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h0 there must be a regime in which the distribution rema
recognizably similar to Fig. 2, with the field-induced broa
ening reaching a relatively small maximum asR,L@h0

2u ~at
fixed R/L). At the other endx!1, the only obvious con-
straint is that~ii ! f (x) must not increase faster thanx2k/u as
x→0, if it does diverge at all.

From scaling plots ofW h0
2k againstL h0

u ~at T5Tc 0 and
h0 not very large! with tentative values of the exponents, w
have found the best data collapse to occur fork.0.43
20.50 andu.0.8. Figure 7, where the vertical axis is log
rithmic, shows our results fork50.45 andu50.8. For x
.1, the fitting spline is the function y520.32
5.3 exp(21.57x), implying a limiting scaled widthW h0

2k

5exp(20.3)50.83, consistent with~i! above. Forx,1 the
fitting curve is given byy51.73 lnx21.40, in agreemen
with requisite~ii !.

To our knowledge there is no structural relationship b
tween the width exponentsk andu and the standard critica
indices, such as the crossover exponentf discussed above
Conversely, one would expect widths to behave similarly
the above picture even atTÞTc 0, provided that one keeps t
high temperatures and low field intensities. Most like
asymptotic scaled widths will depend onT; a matter for fur-
ther investigation is whether or not the numerical values
the exponents will also vary.

V. CONCLUSIONS

We have studied the probability distributions of the o
currence of spin-spin correlation functionsG in the d52
RFIM, for binary distributions of the local fields, at gener
distanceR, temperatureT, and field intensityh0, on long
strips of widthL53 – 15 sites.

We have shown that for moderately high temperatures
the order of the zero-field transition pointTc 0, and field
intensitiesh0&0.120.2 in units of the nearest-neighbor co
pling ~the same order of magnitude used in most exp
ments!, the distributions retain a recognizable single-peak
structure, with a well-defined width. However, they displ
considerable asymmetry, with a short tail below the ma
mum and a long one above it, the latter owing to the mut
reinforcement between ferromagnetic spin-spin interacti

or

FIG. 7. Semilogarithmic scaling plot of rms relative width
W h0

k againstL h0
u . Key to symbols is the same as in Fig. 6. Curv

are fitting splines~see text!.
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5196 PRE 60S. L. A. de QUEIROZ AND R. B. STINCHCOMBE
and large accumulated-field fluctuations. For low tempe
tures, the single-peaked shape deteriorates markedly
crossover takes place towards the double-d structure charac-
teristic of the ground state.

We have established a connection between the probab
distribution for correlation functions and the underlying d
tribution of accumulated field fluctuations. Starting from
zero-temperature description based on the distribution of~es-
sentially flat! domain walls across the strip, we have sho
how ~low-! temperature effects can be incorporated, and
proposed analytical expressions for the main dependenc
the distribution of correlation functions onR, L, T, andh0. In
their assumed domain of validity, i.e.,R/L*1, T!1, not
very smallh0, and close to the upper extremeG51, they are
in good quantitative agreement with numerically calcula
distributions.

At T5Tc 0, for h0→0, we have made contact with sca
ing theory for bulk systems, and developed a finite-size
satz to describe the scaling behavior of averaged correla
functions. The variable that describes such behavior
found to beLyh0, with y50.87560.025 from numerical
data, in excellent agreement with the ansatz’s predictiony
57/8. In the same region, we have also studied the
relative widthW of the probability distributions, and foun
that, for fixed R/L51 it varies asW;h0

k f (L h0
u) with k

.0.45, u.0.8. We have shown thatf (x) fits well to a satu-
rating form whenx→`, thus implyingW;h0

k in d52.
Further developments of the present work would inclu

~i! establishing analytical expressions to connect field fl
tuations, domain size distribution, and correlation funct
distributions in regimes such asR/L.1 ~relevant tod52
behavior!, T;Tc 0, and valid for genericG; and ~ii ! a sys-
tematic study of the variation of widths and their associa
exponents, both against temperature and the ratioR/L. We
are currently considering such extensions.
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Finally, as regards contact with experiment, one may
how the present results for correlation functions relate, e
to the wave-vector-dependent scattering amplitudes in n
tron scattering@18#. Attempts in this direction have bee
made earlier@9#. Since the scattering function reflects spat
averages over relatively extended regions, a connectio
correlation functions must be established via a correlat
length which represents the average decay of spin-spin
relations@9,18#. Furthermore, fitting numerical data from on
end to experimental results from the other is a tricky ta
which is usually mediated by resorting to heuristically pr
posed line shapes. Of these, Lorentzian and Lorentz
squared functions have been among the most popular@9,18#,
though in principle there is no reason why one must be
stricted to them. A broad range of possible line shapes, c
pounded with the wide variation exhibited by several pro
erties of correlation functions, as shown in the present wo
causes one to anticipate a fairly involved investigation.
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